Biofortification of Vermicompost: Advancing crop nutrition and plant disease suppression in organic farming system- A comprehensive review

Roshni Bajaj, Jiwan Singh, Shikha

Department of Environmental Science, BabasahebBhimraoAmbedkar University, Lucknow, 226025, India

Cite this article: Bajaj, R., Singh, J., Shikha., 2025. Biofortification of Vermicompost: Advancing crop nutrition and plant disease suppression in organic farmingsystem-A comprehensive review. J. Appl. Sci. Innov. Technol. 4 (1), 13-22.

Highlights

  • Biofortified vermicompost is rich in micronutrients and beneficial microorganisms
  • Production by adding mineral supplements, microbial inoculants during composting
  • Biofortified vermicompost enhances plant growth
  • Biofortified vermicompost effectively suppresses soil-borne pathogen and foliar diseases
  • Biofortified vermicompost aids in managing crop diseases through SAR, ISR, and antimicrobial compounds
  • Challenges persist in standardizing production and integrating with other practices

Abstract

Biofortified vermicompost is an organic fertilizer enriched with vital micronutrients and beneficial microorganisms, has gained attention as a valuable asset for sustainable agriculture. This review delves into the methods of production, nutrient profile, and agronomic advantages of biofortified vermicompost, along with its potential role in managing crops diseases. The production process incorporates mineral supplements, microbial inoculants, and PGPR during composting, leading to a nutrient-rich end product with enhanced macro- and micronutrient levels. Biofortified vermicompost foster plant growth by enhancing root and shoot development and boosting nutrient absorption. It also assists in controlling crop diseases through mechanisms like SAR,ISR, and generation of antimicrobial compounds, effectively suppressing soil-borne pathogen and foliar diseases. Nonetheless, challenges remain in standardizing its production, integrating it with other farming practices, and ensuring economic viability and scalability. Future research should aim to tackle these challenges and investigate the mechanisms involved in the vermicomposting process. Future research should also focus on optimizing parameters, and elucidate the composition of bacterial communities in the final product. Furthermore, studies on the sociocultural aspects of vermicompost adoption and the formulation of policies to support its use in agricultural system are necessary to fully realize the potential of biofortified vermicompost in sustainable agriculture and environmental management.

Keywords: SAR; ISRP; GPR; Phosphate solubilizing bacteria; Biofortified vermicompost

Scope: Environmental Science

 

References

Aira, M., Olcina, J., Pérez-Losada, M., Domínguez, J., 2016. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates. Appl. Soil Ecol. 98, 103-111.

Akef Bziouech, S., Dhen, N., Ben Ammar, I., Haouala, F., Al Mohandes Dridi, B., 2024. Valorization of vermicompost: Effects on morpho-physiological parameters of organic tomato plantlets (Solanum lycopersicum L.).  J. Plant Nutr. 47(13), 2149-2164.

Badagliacca, G., Testa, G., La Malfa, S.G., Monti, M., Cafaro, V., Lo Presti, E., 2024. Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. J. Hortic. 10(5), 427.

Bhardwaj, S., Chandel, S., 2024. Evaluating fungicides compatibility with native strains of Trichoderma and Aspergillus on tomato crop against damping-off and wilt disease under in-vitro and in vivo conditions. Indian Phytopath. 77(4), 1077-1089

Bisen, K., Pal, R. K., Silas, V. J., 2023. Biofortified Vermicompost Mediated Induced Resistance Response in Tomato against Fusarium oxysporum f. sp. lycopersici. Int.J. Environ. Clim. Change. 13(12), 735-751.

Blomström, A.-L., Lalander, C., Komakech, A. J., Vinnerås, B., Boqvist, S., 2016. A metagenomic analysis displays the diverse microbial community of a vermicomposting system in Uganda. Infect. Ecol. Epidemiol. 6(1), 32453.

Bouis, H. E., Saltzman, A. 2017. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 12, 49-58.

Caretto, S., Colella, G., Lattanzio, V., Linsalata, V., Mita, G. 2015. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress. Int. J. Mol. Sci. 16(11), 26378–26394.

Dhaliwal, S.S., Sharma, V., Shukla, A.K., Verma, V., Kaur, M., Shivay, Y.S., Hossain, A. 2022. Biofortification—A frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Mol. 27(4), 1340.

Dimkpa, C.O., Bindraban, P.S., 2016. Fortification of micronutrients for efficient agronomic production: a review. Agron. Sustain. Dev. 36(1), 7.

Gudeta, K., Bhagat, A., Bhat, S.A., Ameen, F., Sharma, M., Julka, J. M., Sinha, R., Kumari, S., Verma, R., Kumar, A., Amarowicz, R. 2022. Vermicompost and Its Derivatives against Phytopathogenic Fungi in the Soil: A Review. J. Hortic. 8(4), 311.

Gabur, G.D., Teodosiu, C., Fighir, D., Cotea, V.V., Gabur, I. 2024. From Waste to Value in Circular Economy: Valorizing Grape Pomace Waste through Vermicomposting. Agric. 14(9), 1529.

Hafez, M., Zhang, Z., Younis, M., Abdelhamid, M.A., Rashad, M. 2025. Enhancing Micronutrient Availability through Humic Substances and Vermicompost While Growing Artichoke Plants in Calcareous Soil: Insights from a Two-Year Field Study. J. Plants. 14(8), 1224.

Haruna, S.G., 2021. Integrated Disease Management Approach Against Tomato Wilt Caused By Fusarium oxysporum f. sp. lycopersici Using Host Resistance And Bio-Enriched Vermicompost. Niger. J. Mycol. 13, 176.

Hussain, S., Khan, M.A., Khan, S., Shah, A. 2017. Vermicompost as a tool for sustainable agriculture: A review. J. Agric. Sci. Technol. 19(2), 763–774.

Kamar Zaman, A. M., Yaacob, J.S. 2022. Exploring the potential of vermicompost as a sustainable strategy in circular economy: improving plants’ bioactive properties and boosting agricultural yield and quality. Environ Sci Pollut. Res. Int. 29(9), 12948–12964.

Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., Kumar, P. 2020. Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. Fungal Biol. Biotechnol. 457-470.

Karnwal, A. 2021. Pseudomonas spp., a zinc-solubilizing vermicompost bacteria with plant growth-promoting activity moderates zinc biofortification in tomato. Int. J. Veg. Sci. 27(4), 398-412.

Kahromi, S., Khara, J. 2021. Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. J. Sci. Food Agric. 101(9), 3898–3907

Kaur, S., Sharma, A., Choudhary, M., Pandey, A. K., Samota, M. K., Choudhary, M., Thakur, J. 2022. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants. 28(2), 485–504.

Kaur, T. 2020. Vermicomposting: An Effective Option for Recycling Organic Wastes in Book Kumar Das, Shaon, ed.‘Organic Agriculture’. IntechOpen. doi:10.5772/intechopen.89775.

Khalid, I., Haq, S. I. U., Lan, Y., Hussain, M., Anwar, A., Shan, C. 2023. Effect of vermicompost types along with Rhizobium inoculation impact on nodulation potential, growth and yielding attributes of lentil. Biosci. Biotech. Res. Asia. 20(2), 735-744.

Lim, S. L., Wu, T. Y., Lim, P. N., Shak, K.P.Y. 2014. The use of vermicompost in organic farming: overview, effects on soil and economics. J. Sci. Food Agric. 95(6), 1143–1156.

Mahanta, K., Jha, D.K., Rajkhowa, D.J., Kumar, M., 2012. Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biol. Agric. Hortic. 28(4), 241-250.

Matisic, M., Dugan, I., Bogunovic, I. 2024. Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agric. 14(4), 643

Moeinnamini, A., Weisany, W., Hadi, M.R. Torkashvand, H.S., Mohammadinejad, A. 2024. Enhancing Photosynthesis Pigment, Protein Content, Nutrient Uptake and Yield in Maize (Zea mays L.) Cultivars Using Vermicompost, Livestock Manure and Azotobacter chroococcum. J. Soil Sci. Plant Nutr. 24(4), 6999-7009.

Mohite, D.D., Chavan, S.S., Jadhav, V.S., Kanase, T., Kadam, M. A., Singh, A. S. 2024. Vermicomposting: a holistic approach for sustainable crop production, nutrient-rich bio fertilizer, and environmental restoration. Discov Sustain. 5(1).

Mulatu, G., Bayata, A. 2024. Vermicompost as Organic Amendment: Effects on Some Soil Physical, Biological Properties and Crops Performance on Acidic Soil: A Review. Front. 10(4), 66-73.

Muthayya, S., Rah, J.H., Sugimoto, J.D., Roos, F. F., Kraemer, K., Black, R. E. 2013. The global hidden hunger indices and maps: an advocacy tool for action. PloSone, 8(6), 67860.

Nestel, P., Bouis, H.E., Meenakshi, J.V., Pfeiffer, W. 2006. Biofortification of staple food crops. J. Nutr. 136(4), 1064-1067.

Oyege, I., Balaji Bhaskar, M.S. 2023. Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Syst. 7(4), 101.

Ozturkci, S., Akkopru, A., 2021. The role of bioactive composts in plant disease management and growth promotion. Compost Sci. Util. 29(3), 145–152.

Pakeerathan, K., Jeyavithuyan, K., Nirosha, A., Mikunthan, G., 2023. Production of bio fortified vermicompost and its efficacy against onion basal rot disease caused by Fusarium oxysporum f. sp. cepae. Sarhad J. Agric. 39 (3), 703.

Pathma, J., Sakthivel, N. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1, 26.

Raman, K. N., Kumar, V., Masurkar, P., Jemima, A. 2023. Evaluation of Trichoderma asperellum biofortified with vermicompost against Fusarium oxysporum f. sp. lycopersici. J. Biopestic. 16(1), 24-32

Rehman, S. U., De Castro, F., Aprile, A., Benedetti, M., Fanizzi, F. P. 2023. Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. J. Agron. 13(4), 1134.

Roy, T., Bandopadhyay, A., Majumdar, S., Alam, S., Das, N. 2025. Induced Systemic Resistance-Mediated Defense Against Alternaria Blight Disease in Lentil by Pesticide Degrading Plant Growth-Promoting Rhizobacteria. Curr Microbiol. 82(3), 109.

Rugeles-Reyes, S.M., Cecílio Filho, A. B., Silva, P.H.S., López Aguilar, M. A. 2019. Foliar application of zinc in the agronomic biofortification of arugula. Food Sci.Technol. 39(4), 1011–1017.

Sande, T. J., Tindwa, H. J., Alovisi, A. M. T., Shitindi, M. J., Semoka, J. M. 2024. Enhancing sustainable crop production through integrated nutrient management: a focus on vermicompost, bio-enriched rock phosphate, and inorganic fertilisers–a systematic review. Front. Agron. 6, 1422876.

Saxena, J., Choudhary, S., Pareek, S., Choudhary, A. K., Iquebal, M. A. 2015. Recycling of organic waste through four different composts for disease suppression and growth enhancement in mung beans. Clean–Soil, Air, Water. 43(7), 1066-1071.

Singh, A., Parmar, N., Kuhad, R.C., Ward, O.P. 2011. Bioaugmentation, biostimulation, and biocontrol in soil biology (pp. 1-23). Springer.

Singh, A., Sharma, S., Kumar, R. 2020. Biofortification of vermicompost: An approach to enrich compost with micronutrients. Int. J. Recycl. Org. Waste Agric.9, 145–152.

Singh, G., Singh, J., Bakshi, M. 2023. Biofortification of Vermicompost with Beneficial Microorganisms and Its Field Performance in Horticultural Crops. J. Adv. Zool. 44.

Singh, R., Prasad, S.K., Singh, M.K., 2014. Effect of nitrogen and zinc fertilizer on Zn biofortification in pearlmillet (Pennisetum glaucum). Indian J. Agron. 59(3), 474-476.

Subashini, S., Chithambaram, G., Alagendran, S., Ponraj, M. 2021. Effect of Trichoderma fortified Vermicompost managing root rot diseases in Cowpea. Int. J. Adv. Res. Biol. Sci, 8(8), 126-130.

Suyal, D.C., Singh, D.K., Goel, R., Soni, R 2021. Microbiome change of agricultural soil under organic farming practices. Biologia, 76(4), 1315–1325.

Thakur, V., Sharma, A., Sharma, P., Kumar, P., Shilpa. 2022. Biofortification of vegetable crops for vitamins, mineral and other quality traits. J Hortic Sci Biotech. 97(4), 417-428.

Vuković, A., Štolfa Čamagajevac, I., Lončarić, Z., Vuković, R., Velki, M., Ečimović, S. 2021. Vermicomposting—Facts, Benefits and Knowledge Gaps. Agron. 11(10), 1952.

Walia, S.S., Kaur, T. 2024. Beneficial role of vermicompost: nutrient content in vermicompost and success stories. In Earthworms and vermicomposting: species, procedures and crop application (pp. 135-146). Springer Nature.

Wonglom, P., Ruangwong, O. U., Poncheewin, W., Arikit, S., Riangwong, K., Sunpapao, A. 2024. Trichoderma-bioenriched vermicompost induces defense response and promotes plant growth in Thai rice variety “Chor Khing”. J. Fungus. 10(8), 582.

Yatoo, M. A., Saxena, A., Deepika, S., Patel, R. 2021. Role of vermicompost in enhancing soil fertility and crop productivity: A review. Int. J. Environ. Sci. Nat. Resour. 28(1), 556225.

Yatoo, A. M., Hassan, B., Baba, Z. A., Ali, M.N. 2021. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review.Agron. Sustain. Dev. 41(1).

Yatoo, A.M., Ali, M.N., Baba, Z.A., Alsohim, A.S., Muthukumaran, M., Sayyed, R.Z. 2024. Effect of macrophyte biomass-based vermicompost and vermicompost tea on plant growth, productivity, and biocontrol of Fusarium wilt disease in tomato. Biocatal. Agric. Biotechnol. 103320.

 

 

 

 

 

 

 

Leave a Reply

Your email address will not be published. Required fields are marked *